WHERE MATH AND SCIENCE

IFLY MAKES LEARNING FUN WITH STEM

The Science & Engineering of iFLY

Exciting futures in STEM await you.

This is a <u>Closed</u> <u>Loop Vertical</u> <u>Wind Tunnel</u>.

Wind tunnel testing

What forces are acting upon a sky diver in the tunnel?

Air is a fluid.

Skydiver's Height When Falling from an Airplane

Skydiver's Velocity When Falling from an Airplane

Skydiver's Acceleration When Falling from an Airplane

force of air

force of air

gravity

gravity

When drag force = gravity, you reach terminal velocity.

force of air

gravity

gravity

$$F_W - F_D = ma$$

At terminal velocity:

$$F_W - F_D = 0$$

$$F_W = F_D$$

A larger frontal area decreases your velocity.

How fast
does the air have
to move
to support
your weight?

Engineers and scientists use mathematics to *quantify* physical principles ...because...

we want to be able to *predict* what's going to happen.

What factors contribute to your terminal velocity?

- **≻** Mass
- ➤ Gravity
- ➤ Surface Area

- **>** Drag
- ➤ Air Density

$$v = \frac{m}{}$$

$$v = \frac{mg}{}$$

Frontal Area

$$v = \frac{mg}{A_f}$$

$$v = \frac{mg}{A_f C_D}$$

Air Density

$$v = \frac{mg}{A_f C_D \rho}$$

The experiment plan: predict your terminal velocity

$$v = \sqrt{\frac{2mg}{A_f C_D \rho}}$$

- Measure yourself to find your frontal area.
- Go flying!
- > During your flight, we'll record your terminal velocity
- After your flight, use your measurements to predict what your terminal velocity should be.
- Compare your predicted velocity with your actual velocity. How close did you get?

Now let's go flying!

Additional Slides

Drag coefficients for simple objects

What would you guess the drag coefficient of your body is in free flight?

Fluids also have *viscosity*, which produces *friction* forces

Which type of fluid has the higher viscosity, liquids or gases?

Drag is the combination of friction and pressure forces

Which kind of drag do you think is more important for air flows?

How do we know the air speed?

...with a Pitot Static Tube.

...we measure it...

Can you find them in our wind tunnel?

<u>Drag of an object depends on its shape, its size,</u> and the velocity of the air stream

Shape:

WHERE MATH AND SCIENCE

IFLY MAKES LEARNING FUN WITH STEM

The Science & Engineering of iFLY

